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ABSTRACT 

*
In this paper, two probabilistic prognosis 

updating schemes are compared. One is based 

on the classical Bayesian approach and the 

other is based on newly developed maximum 

relative entropy (MRE) approach. The 

algorithm performance of the two models is 

evaluated using a set of recently developed 

prognostics-based metrics. Various 

uncertainties from measurements, modeling, 

and parameter estimations are integrated into 

the prognosis framework as random input 

variables for fatigue damage of materials. 

Measures of response variables are then used 

to update the statistical distributions of 

random variables and the prognosis results are 

updated using posterior distributions. Markov 

Chain Monte Carlo (MCMC) technique is 

employed to provide the posterior samples for 

model updating in the framework. 

Experimental data are used to demonstrate the 

operation of the proposed probabilistic 

prognosis methodology. A set of prognostics-
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based metrics are employed to quantitatively 

evaluate the prognosis performance and 

compare the proposed entropy method with 

the classical Bayesian updating algorithm. In 

particular, model accuracy, precision, 

robustness and convergence are rigorously 

evaluated in addition to the qualitative visual 

comparison. Following this, potential 

development and improvement for the 

prognostics-based metrics are discussed in 

detail.  

1 INTRODUCTION 

Fatigue damage is a critical issue in many structural 

and non-structural systems, such as aircraft, critical 

civil structures, and electronic components. The 

estimation of the reliability and remaining useful life 

(RUL) is important in condition-based maintenance of 

a system so that unit replacements can be done in time 

prior to catastrophic failures. Several physics-based 

models have been proposed in order to describe the 

fatigue process and predict the damage propagation; 

among these, Paris-type crack growth laws (Paris and 

Erdogan, 1963; Forman et al., 1967; Walker, 1970) are 

most commonly used (Bourdin et al., 2008). However, 

experimental data indicate that fatigue crack 

propagation is not a smooth, stable and well ordered 

process (Virkler et al., 1979), thus a deterministic 

model is not capable of quantifying the crack growth 

subject to various uncertainties associated with the 
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fatigue damage. Uncertainties arising from a number of 

sources, such as measurement errors, model prediction 

residuals, and non-optimal parameter estimation, affect 

the quality of life predictions. These uncertainties need 

to be carefully included and managed in the prognosis 

process for risk management and decision-making. 

 In order to model the stochastic process of fatigue 

propagation and gain knowledge about a target system 

via monitoring system responses, probabilistic updating 

methods based on Bayes theorem have been used to 

evaluate the probability density functions (PDF) of 

input parameters using response measurements. For 

example, see (Madsen, 1997; Zhang and Mahadevan, 

2000; Perrin et al., 2007). Entropy methods, such as 

Maximum Entropy (MaxEnt) theorem (Jaynes, 1957; 

Jaynes, 1979; Skilling, 1988) and relative entropy 

methods (van Campenhout and Cover, 1981; Haussler, 

1997), are alternative approaches for probability 

assignment and updating and have been used in many 

applications such as statistical mechanics (Caticha and 

Preuss, 2004; Tseng and Caticha, 2008), quantum 

physics (Hiai and Petz, 1991; Vedral, 2002), and 

fatigue prognosis (Guan et al., 2009a,b). This paper has 

two objectives; the first is to develop a general 

prognosis approach based on maximum relative 

entropy (MRE) principles for probabilistic fatigue 

damage prognosis and compare it to the classical 

Bayesian approach, and the other is to explore 

prognosis metrics to evaluate prognosis performance 

quantitatively. One of the advantages of the proposed 

MRE approach is that the resulting confidence bounds 

are narrower compared to the classical Bayesian 

method, which is beneficial for decision making in a 

health management setting. The rest of the paper is 

organized as follows. In section 2, we review the 

classical Bayesian approach and formulate a general 

MRE updating and prognosis framework. Section 3 

presents two application examples and methodology 

validation. Section 4 discusses algorithmic performance 

metrics and extends the two examples of section 3 in 

this context. Following that is the discussion and 

conclusion. 

2 PROBABILISTIC MODEL UPDATING 

In this section, both the classical Bayesian probability 

updating and a general MRE prognosis framework for 

fatigue damage problems are introduced. To evaluate 

the posterior probability distribution, Markov Chain 

Monte Carlo (MCMC) simulation is then introduced 

and employed in this framework to approximate the 

target distribution. For a generic inference problem 

with an uncertain parameter vector Θ∈θ , the posterior 

PDF of θ  is inferred on the basis of three pieces of 

information: the prior knowledge about θ  (the prior 

PDF of θ ), the observation of a response 

event/variable Χ∈x , and the known relationship 

between x  and θ  (the likelihood function based on 

physical/mathematical models). The search space for 

desired posterior PDF of θ  is Θ×Χ . Both Bayesian 

and MRE are capable of performing the search for an 

optimized posterior. However, these two approaches 

are based on different mechanisms. This is discussed in 

details in the following paragraphs.  

2.1 Classical Bayesian model updating 

Bayes’ theorem provides a model for inductive 

inference or the learning process. A Bayesian posterior 

PDF is a measure of known information about 

parameters with uncertainty. Bayes’ theorem is a means 

for combining the observation regarding the related 

parameters through the likelihood function (Gregory, 

2005). Let ( )θµ  be a prior distribution, ( )θp  be a 

posterior distribution and ( )θ|'xL  be the likelihood 

equation with parameter vector θ  and response 

variable 'x . According to Bayes’ theorem, the 

optimized posterior that reflects the fact that we 

observed 'x  is 

 

( ) ( ) ( )θθµθ |xLp ′⋅∝                     (1) 

 

The Bayesian formulation of a posterior is 

straightforward and has an enormous variety of 

applications, such as the model updating in fatigue 

analysis (Dey et. al., 1998). Detailed derivation and 

demonstration can be found in the referred article and is 

not repeated here. One issue with the classical Bayesian 

approach is that only response observations can be used 

for updating. Other types of information, such as the 

expected value of a parameter and statistical moments, 

cannot be directly incorporated into the classical 

Bayesian framework. For example, coupon level 

experiment testing and failure analysis can reflect 

statistical features of batch productions. The statistical 

information can further help to improve the individual 

prognosis performance. In order to include this type of 

information in the probabilistic prognosis and model 

updating, an entropy-based probabilistic inference 

framework has been developed. Details are discussed 

below. 

2.2 MRE approach for model updating 

The relative information entropy, also referred to as 

Kullback-Leibler divergence (Kullback and Leibler, 

1951), of two PDFs ( )θ
1

f  and ( )θ
2

f  is defined as, 

 

( ) ( ) ( ) ( )( )∫Θ ⋅−= θθθθ
21121

log: fffdffI         (2) 
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where θ  is the parameter vector and Θ  is the 

associated vector space. The axioms of maximum 

entropy indicate that the form of Eq. (2) is the unique 

entropy representation for inductive inference (Skilling, 

1988).  

 The three axioms are: 

1. Locality – Local information has local effects. 

2. Coordinate invariance – The ranking of the two 

probability densities should not depend on the 

system coordinates. This indicates that the 

coordinates carry no information. 

3. Consistency for independent subsystem – For a 

system composed of subsystems that are 

believed to be independent; it should not make 

a difference whether the inference treats them 

separately or jointly. 

 Using the similar notation above, let ( )θµ ,x  be a 

prior joint distribution and ( )θ,xp be a posterior joint 

distribution. According to the entropy axioms, the 

selected joint posterior is the one that maximizes the 

relative entropy ( )µ:pI  in Eq. (3), subject to all 

available constraints, such as statistical moments and 

measures of a response event/variable. 
 

( ) ( ) ( ) ( )( )∫ ⋅−= θµθθθµ ,,log,: xxpxpdxdpI    (3) 

 

In Eq. (3), ( ) ( ) ( )θµθµθµ |, xx =  contains all prior 

information. ( )θµ |x  is the likelihood function and 

( )θµ  is the prior PDF. The same relationship applies to 

the joint posterior ( )θ,xp . When new information is 

available in the form of a constraint, the updating 

procedure will search in the space of Θ×Χ  for a 

posterior which maximizes ( )µ:pI . Measurements of 

the response variable x  can be used to perform the 

updating, which is performed in a similar way as the 

classical Bayesian updating. The benefit of MRE 

updating is that it can incorporate other information for 

inference, which cannot be included in the classical 

Bayesian updating. For example, the expected value of 

a function of θ  or the empirical judgment on the mean 

value of θ  can be used in MRE updating (Giffin and 

Caticha, 2007). This flexibility of applicable 

information can pose more constraints on a posterior 

thus yield a more accurate result given that those 

constraints are justified. Following the derivation of 

MRE posterior (Caticha and Giffin, 2006), if a new 

observation x′  is obtained, the posteriors that reflect 

the fact x  is now known to be x′  is a constraint such 

that  
 

( ) ( ) ( )xxxpdxpc ′−=⋅= ∫ δθθ ,:
1

           (4) 

 

Other information in the form of moment constraints, 

such as the expected value of some function ( )θg , can 

be formulated as 
 

( ) ( ) ( ) Gggxpdxdc ==⋅∫ θθθθ ,:
2

          (5) 

 

The normalization constraint is  
 

( )∫ =⋅= 1,
3

θθ xpdxdc                    (6) 

 
Maximizing Eq. (3), subject to constraints Eqs. (4-6),  
the desired posterior can be obtained as 
 

( ) ( ) ( ) ( )θβθµθµθ gexp ⋅′∝ | .                   (7) 

 

The detailed derivation of Eq. (7) and the computation 

of β  can be found in (Guan et. al., 2009a). The right 

side of Eq. (7) consists of three terms. ( )θµ  is the 

parameter prior, ( )θµ |x′  is the likelihood, and ( )θβ ge ⋅  

is the exponential term introduced by moment 

constraints. Eq. (7) is similar to Bayesian posterior 

except for the additional exponential term. This 

equation further indicates that, if no moment constraint 

is available, i.e., β  is zero, MRE updating will be 

identical to Bayesian updating. In other words, 

Bayesian updating is a special case of MRE updating. 

Similar to that of a Bayesian updating problem, the 

likelihood function is usually constructed using the 

physics-based model depending on different realistic 

applications. 

2.3 Fatigue mechanism model and likelihood 

function construction 

In this section, a general procedure of constructing the 

likelihood equation is presented. Let d  be a response 

variable measure of our target system and y  be the 

prediction value of a prediction model M . If the model 

is sufficiently accurate to describe the system output, 

the observed value is equal to model prediction value, 

i.e. dy = . However, noise and errors usually exist for 

both modeling and measurements. Incorporating a 

modeling error term e  and a measurement error term 

ε  into consideration and assuming both errors are 

additive, we have, 

 

( ) εθ ++= exMd | ;                       (9) 

 

where ( )θ|xM  is the model prediction and θ  is the 

model parameter vector. The two uncorrelated error 

terms e  and ε  usually can be described using two 
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independent zero-mean normal variables. Replacing the 

two error terms with a total error term 

( ) ( )τσετ ,0~ Normale += , the likelihood function of 

multiple observations can be constructed as 

 

( )
( )

( )[ ]







 −

−= ∑
=

n

i

i

nn

xMd
dL

1

2

2

...1
2

|
exp

2

1
|

τ
τ

σ

θ

σπ
θ .(10) 

 

, where ( )θ|
...1 n

dL  is the joint PDF of observations 

given parameter θ . Substituting Eq. (10) in Eq. (7), an 

MRE posterior of θ  is derived to be  

 

( ) ( ) ( )[ ] ( )θβ

ττ
σ

θ

σ
θµθ g

n

i

i

n
e

xMd
p







 −
−∝ ∑

=1

2

2

2

|
exp

1
.  (11) 

 

For fatigue damage model ( )θ|xM , various 

deterministic models have been proposed to describe 

the fatigue crack accumulation, among which Paris 

type of laws are commonly used in cycle based fatigue 

crack growth calculation. In this study, Paris model 

(Paris and Erdogan, 1963) is employed for illustration 

purposes. In a realistic situation, other model might be 

adopted accordingly. Let a  be the crack length, N  be 

the number of cycles, the Paris’ law reads, 

 

( ) ( )( )mm
aFacKc

dN

da
⋅⋅∆=∆= πσ        (12) 

 

where c  and m  are material constants, K∆  is the 

variation of stress intensity factor in one cycle of stress 

amplitude σ∆ , and ( )aF  is the geometric correction 

factor. The crack size can be calculated by solving Eq. 

(12) numerically given c , m , and N . Early studies 

show that )log(c  follows a normal distribution and m  

follows a truncated normal distribution (Kotulski, 

1998). Assuming )log(c  and m are independent 

variables and combining Eq. (12) with Eq. (11), the 

joint posterior can be expressed as Eq. (13) using MRE 

formulation. 

 

( )

( )

( )

( )












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



 −
−

⋅
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


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



+



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
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−

⋅










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1
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),log(
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β
σ
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σ

β
σ

ζ

σ

 (13) 

 

Setting β  to zero in Eq. (13) gives Bayesian 

formulation of the same problem. The PDF of one 

parameter can be obtained by integrating over the rest 

of the parameters. But for a large dimension parameter 

space, more general and computationally efficient 

methods, such as sampling techniques, might be 

applied. 

2.4 MCMC simulation method 

Direct evaluation of the PDF in Eq. (13) is difficult 

because of the multi-dimensional integration needed for 

normalization. In order to circumvent the direct 

evaluation of Eq. (13), Markov Chain Monte Carlo 

sampling technique is used in this study. MCMC was 

first introduced by (Metropolis et al., 1953) as a 

method to simulate a discrete-time homogeneous 

Markov chain. The merit of MCMC is that it 

overcomes the normalization of Eq. (13) and ensures 

that the state of the chain converges to the target 

distribution after a large number of steps from an 

arbitrary initial start. The widely used random walk 

algorithm, Metropolis-Hastings algorithm (Hastings, 

1970), is summarized here. 

 The transition between two successive samples 
t

x  

and 
1+t

x  is defined by Eq. (14). 

 

( ) ( )





=
+

elsex

xxyprobabilitwithxXqx
x

t

tt

t

~,|~~

1

α
,  (14) 

 

where ( )
t

xXq |  is the transition distribution, and 

( ) ( )rxx
t

,1min~, =α  is the acceptance probability. The 

Metropolis ratio r  is defined as, 

 

( )
( )

( )
( )

t

t

t
xxq

xxq

xp

xp
r

|~

~|~
=                        (15) 

 

where ( )⋅p  is the posterior probability representation. 

In our case, ( )⋅p  is computed using Eq. (13). For a 

symmetric transition distribution of ( )⋅q , such as a 

normal distribution, the property of ( ) ( )
tt

xxqxxq |~~| =  

simplifies Metropolis ratio in Eq. (15) to 

( ) ( )
t

xpxpr ~= . In this paper, 100,000 posterior 

samples of ( )mc),log(  are generated with a 5% burn-in 

period using a normal transition distribution. 

Additionally, the moment information of these samples 

is then integrated into the proposed MRE updating 

procedure. 
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3 APPLICATION EXAMPLES 

Two fatigue crack growth experimental datasets are 

used to demonstrate the proposed MRE updating 

procedure and show the benefits of this approach.  

3.1 Virkler’s 2024-T3 aluminum alloy experimental 

data  

An extensive fatigue crack growth data under constant 

loading for Al 2024-T3 plate specimens with center 

through cracks was collected in (Virkler et al., 1979). 

The dataset consists of 68 fatigue crack growth 

trajectories and each trajectory contains 164 

measurement points. All specimens have the same 

geometry, i.e., an initial crack size mma
i

9= , length 

mmL 8.558= , width mmw 4.152=  and thickness 

mmd 54.2= . The loading information is 

MPa28.48=∆σ  and stress ratio 2.0=R .  The 

geometry correction factor for Virkler’s experiments is 

( ) ( )waaF /cos1 π= . Kotulski (1998) reported the 

statistical information of the parameters in Paris’ law, 

namely, mean values 155.26)log( −== c
c

ζ  and 

874.2== m
m

ζ  with standard deviations 968.0=
c

σ  

and 164.0=
m

σ , respectively. Assuming the total error 

term is mm1.0=τσ  (see Eq. (8)) and substituting the 

statistics information into Eq. (12) with )log()( ccg
c

=  

and mg
m

= , the updating procedure can be performed 

when observation data become available. 

 One crack growth trajectory in Virkler’s dataset was 

selected arbitrarily for fatigue crack length prediction 

updating from (Ostergaard and Hillberry, 1983). Five 

data points in the early stage of the crack propagation 

are randomly chosen to represent the measured ground 

truth values of crack length a  obtained from health 

monitoring system or nondestructive inspection. These 

data points are listed in Table 1. 

 Predictions from MRE updating and Bayesian 

updating procedures are shown in Figure 1. As can be 

seen, MRE updating gives a narrower prognosis 

confidence interval as compared to classical Bayesian 

updating. It further justifies that the additional moment 

constraints imposed on the posterior yield a more 

compact results. 

Table 1: Data used for updating (Virkler’s dataset) 

Number Crack size (mm) Cycle 

1 9.7330 21269 

2 10.5272 42734 

3 11.2557 56392 

4 12.1708 73161 

5 15.0549 110487 

 

3.2 McMaster’s 2024-T351 aluminum alloy 

experimental data 

A large set of 2024-T351 aluminum alloy experimental 

data under constant and variable loading conditions 

were obtained in (McMaster and Smith, 1999). The 

experimental data of center-cracked specimens with 

length mmL 250= , width mmw 100= and thickness 

mmt 6=  under constant loading MPa7.65=∆σ  and 

stress ratio 1.0=R  are used in this paper. Priors of the 

parameters are obtained by ( ) )log(~/log KdNda ∆  

regression using the experimental data. Five data points 

as shown in Table 2 are chosen arbitrarily to be used as 

sensor measurements from health monitoring system in 

order to perform the updating. The prior PDFs is 

artificially set as 5.26−=
c

ζ  and 9.2=
m

ζ , which is 

not sufficiently accurate enough to match the 

experimental records as seen in Figure 2. 

Cycle

C
ra

c
k
 l
e

n
g

th
 (

m
m

)
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Figure 1: MRE and Bayesian prognosis (Virkler’s 

dataset) 

 The predictions of MRE and Bayesian updatings are 

further shown in Figure 2, where interval predictions 

obtained by MRE updating are much narrower than that 

by Bayesian updating.  

Table 2: Data used for updating (McMaster’s dataset) 

Number Crack size (mm) Cycle 

1 11.3611 4875 

2 11.9282 8475 

3 12.3254 11550 

4 13.8563 17775 

5 14.8771 21375 
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 MRE updating shows the advantages over Bayesian 

updating in two application examples (visual 

observation). This is more likely due to the additional 

statistical moment constraints of MCMC samples 

added to posteriors. To quantify the performance, 

prognosis metrics need to be considered to provide a 

rigorous comparison between MRE updating and 

Bayesian updating as given below. 

Cycle

C
ra

c
k
 l
e

n
g

th
 (

m
m

)
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Prior estimate

 

Figure 2: MRE and Bayesian prognosis (McMaster’s 

dataset) 

4 METRIC-BASED PERFORMANCE 

EVALUATION OF THE MODEL 

Various metrics are available to quantify the 

performance of prognosis algorithms (Saxena et al., 

2008). In this section, classical error based statistical 

measures and several prognosis metrics are applied to 

quantify the prediction performance of application 

examples in the previous section. 

4.1 Statistical metrics 

Metrics, such as mean squared error (MSE), mean 

absolute percentage error (MAPE), average bias, 

sample standard deviation (STD), and their variations 

are widely used in medicine and finance fields where 

large datasets are available for statistical data analysis 

(Saxena et al., 2008). The results for those classical 

metrics shown in Table 3 and Table 4, (rows 1-4) are 

computed using the prediction residuals (the difference 

between actual RUL and predicted RUL) obtained after 

the fifth updating. The proposed MRE approach shows 

its advantages over Bayesian method in all cases.  

4.2 Prognosis metrics 

The metrics mentioned in Section 4.1 are general 

purpose metrics and were not specifically designed for 

prognosis. In (Saxena et al., 2009a) authors proposed 

several metrics, such as Prognostic Horizon (PH), 

Alpha-Lambda (α-λ) Performance, Relative Accuracy 

(RA), Cumulative Relative Accuracy (CRA), and 

Convergence; that were designed specifically for 

prognosis to incorporate the prediction distributions 

and the structure of the prognostics process. These 

metrics help assess how well prediction estimates 

improve over time as more measurement data become 

available. For readers’ reference, we present a brief 

definition of these metrics here.  

1. Prognostic Horizon is defined as the length of time 

before end-of-life (EoL) when an algorithm starts 

predicting within specified accuracy limits. These 

limits are specified as ±α% of the true EoL. 

2. α-λ Accuracy determines whether predictions from 

an algorithm are within ±α% accuracy of the true RUL 

at a given time instant, specified by the parameter λ. 

For instance a λ = 0.5 would specify midway between 

the first time a prediction is made and EoL. 

3. Relative Accuracy quantifies the percent accuracy 

with respect to actual RUL at a given time (specified by 

λ). It’s an accuracy measure normalized by RUL, 

signifying that predictions closer to EoL should be 

more accurate and precise. 

4. Cumulative Relative Accuracy is a weighted 

average of RAs computed at different time instances. 

Weights can be assigned to the predictions based on 

how critical they become as EoL approaches, and hence 

the accuracy of the predictions. 

5. Convergence quantifies the rate at which any 

performance metric of interest improves to reach its 

desired value as time passes by.  

 For more description, implementation details and 

application examples on these metrics; the reader may 

referred to (Saxena et al., 2009a). In general, these 

metrics were designed to capture the time varying 

aspects of prognostics. As more data become available 

prognostic estimates get revised. It is, therefore, 

important to track how well an algorithm performs as 

time passes by as opposed to evaluating performance at 

one specific time instant only. Further, these metrics 

also incorporate the notion of increased criticality as 

EoL approaches, which imply that a successful 

prognosis algorithm should improve as the system 

approaches its EoL. 

 In this paper we compare the two approaches based 

on Bayesian and MRE updating. In addition to 

evaluating performance based on prognosis metrics, we 

also include some classical statistical metrics. For this 

purpose, in our approach we include an additional 

updating point from the end of time series to establish 

EoL and compute the RUL curves. Results obtained 

from this evaluation exercise are presented next. 
 
Performance results for Virkler’s dataset 
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The visual results for PH and α-λ accuracy are shown 

in Figure 3. Numerical values of those metrics are 

listed in Table 3. For computing CRA (see Table 3), the 

starting point is cycle zero because the specimens have 

initial cracks. We evaluated RA at 20, 40, 60, and 80% 

of EoL and did not use weighting factors. This assumes 

that relative accuracy is equally weighted at all time 

instants. Though, this may not always be preferable, a 

simplistic evaluation was carried out to observe the 

natural behavior of the algorithm itself. 
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Figure 3: Performance comparison for PH and α-λ 

accuracy at α=0.1 (10% error bound) on Virkler’s 

dataset 

 Figure 3 compares the prediction horizon for the 

two algorithms with 10% error bound around EoL 

value. Using the strict definition for PH as laid out in 

(Saxena et al., 2009b), we observed that MRE yields a 

larger PH. The plot of PH performance in Figure 3 

shows that 90% MRE interval prediction enters the 

90% accuracy zone at the fifth updating, while 

Bayesian prediction enters the zone at the sixth 

updating showing that MRE is slightly better than 

Bayesian. It is worth mentioning that there is no 

specific reason to choose 9.0=β , which is very 

conservative and strict. Typically 50% corresponds to 

evaluating mean value being inside the alpha bounds. It 

depends on specific reliability requirement and actual 

application constraints to pick up a proper value. In 

general, it indicates that, for engineering practice, the 

proposed MRE can give an informative prediction at an 

earlier stage of the whole lifecycle.  

Table 3 Comparison of metrics between MRE and 

Bayesian approaches (Virkler’s dataset) 

Metric MRE Bayesian 

MAPE 8.66 10.93 

Average Bias (cycles) 10956.27 14051.92 

STD (cycles) 7628.77 9115.78 

MSE(cycle2) 178.23 x 106 280.5 x 106 

PH(cycle) 132016 83583 

RA λ=0.4 0.92 0.89 

CRA 0.89 0.87 

Convergence 74365.72 77349.24 

 

 Looking at Table 3 one can see that on Virkler’s 

dataset MRE performs better than Bayesian approach 

under all performance measures. One must note that 

although classical metrics conclude the same as the 

new prognostics metrics, they do not take into account 

the time varying nature of the prognostics and hence 

may not always be useful in practice. 

 
Performance results for McMaster’s dataset 
 
Next, we perform a similar analysis for the McMaster’s 

dataset. The visual results for PH and α-λ accuracy 

metrics comparing Bayesian and MRE updating are 

shown in Figure 4. The rest of the metrics are included 

in Table 4. Looking at these results, the general 

conclusion about the superior performance of the MRE 

procedure from Virkler’s dataset is further 

strengthened. The MRE’s superior performance over 

Bayesian approach is attributed to the ability to 

incorporate additional knowledge about the system 

using additional constraints. 

Table 4 Comparisons of metrics between MRE and 

Bayesian approaches (McMaster’s dataset) 

Metric MRE Bayesian 

MAPE 4.06 22.53 

Average Bias (cycles) 418.76 4561.93 

STD (cycles) 1413.53 6888.38 

MSE (cycle2) 2.17 x 106 68.26 x 106 

PH(cycle) 32475 N/A 

RA λ=0.4 0.99 0.86 

CRA  0.95 0.87 

Convergence 13757.94 22175.16 

 

 For this dataset, these metrics clearly distinguish the 

two approaches and show better outcomes from the 

MRE method. For example, the PH and α-λ 

performance metrics shown in Figure 4 present clear 

visual comparisons, e.g., the prognosis bounds obtained 

by MRE enters the cone area at the fourth updating 

which is earlier than that of Bayesian. 
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Figure 4: Performance comparison for PH and α-λ 

accuracy at α=0.1 (10% error bound) on McMaster’s 

dataset 

5 DISCUSSION 

As observed in the previous section, there are a few 

aspects where these metrics can be further enhanced to 

improve performance evaluation.  

 The significant difference between the PHs for the 

two algorithms may also be an artifact of the frequency 

at which these algorithms make a prediction. 

 We also observed that in a probabilistic prognosis 

updating scheme, the selection of priors may produce 

different prognosis results and affect the performance. 

Consequently, different updating methods may exhibit 

different robustness with inappropriate priors. Next, we 

discuss some of these issues as they relate to prognosis 

metrics. 

5.1 Convergence metric 

The convergence metric computes a value to quantify 

how fast prognostic estimates improve and converge 

towards the ground truth. A metric like convergence is 

meaningful only if an algorithm improves with time 

and passes various criteria defined by other prognostic 

metrics. For example, the convergence in terms of RUL 

relative error (RE) defined in Eq. (16), which is the 

difference between an actual response measure ( R ) 

and the inferred value (
0

R ) divided by the actual 

response measure, for Virkler’s dataset, shows a 

monotonic decreasing trend after the second update 

(Figure 5). Both MRE and Bayesian methods show 

diverging trends for McMaster’s dataset (Figure 6).  

 

( ) RRRRE −=
0

:                            (16) 
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Figure 5: Comparison of convergence performance on 

Virkler’s dataset 
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Figure 6: Comparison of convergence performance on 

McMaster’s dataset 

 The results (converging and diverging trends) 

suggests that a metric like convergence will not make 

complete sense if the algorithms do not show 

improvements with time and hence additional fine 

tuning of the algorithms is required. The length of the 

dash line (Figure 5 and Figure 6) between the 

coordinate origin and the centric point of the area 

covered by the RE curves serves as a quantitative value 

of convergence metric. The details of that can be found 

in (Saxena et al., 2009a). It is worth mentioning that 

different applications may require different measures 

instead of RE and the choice of measures depends on 

which aspect of the algorithmic convergence we would 

like to investigate. 
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5.2 Robustness metric 

From the above examples, it is shown that the selection 

of a prior PDF is critical for a meaningful prognosis 

using probabilistic updating schemes such as Bayesian 

and MRE. An inaccurate prior may render a poor 

prediction of RUL. For example, when the prior 

prediction shown in Figure 7 is very different from the 

actual distribution, the Bayesian predictions lead to 

inaccurate estimates with very wide confidence bounds. 

The MRE updating approach performs well while using 

the same inaccurate prior distributions.  
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Figure 7: MRE and Bayesian prognosis with an 

inaccurate prior (McMaster’s dataset) 
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Figure 8: MRE and Bayesian prognosis with an 

accurate prior (McMaster’s dataset) 

 On the other hand, starting with a relatively accurate 

prior prediction, both MRE and Bayesian give similar 

predictions as shown in Figure 8. It is valuable to 

define a robustness metric that can quantify the 

sensitivity of different algorithms with respect to the 

algorithm parameters, such as prior distribution, initial 

conditions, and training data size. 

 A preliminary study on the robustness metric is 

shown below. The basic idea is to quantify the change 

of prognosis confidence bounds due to the changing of 

algorithm parameter values. The range of investigated 

parameter is first defined based on specific application 

requirements (e.g., 10% variation around the mean 

value) or based on the underlining physics requirement 

(e.g., parameter should be non-negative). In this paper, 

we used a parameter η to specify the range of 

interested parameter (i.e., the parameter is in the range 

of mean±η ). For a robust algorithm, the change of 

algorithm parameters will not affect the prognosis 

confidence bounds much. In view of this, the area in a 

confidence bound vs. parameter variation plot is a good 

indication of algorithm robustness (shaded area in 

Figures 9 and 10). In order to perform the metric 

comparison across different parameter spaces, a 

normalization process is proposed. A reference area is 

defined by specifying an allowable prediction error 

level (e.g., ±20% in the current investigation). This 

allowable level is expressed using parameter δ . The 

reference area can be calculated as 4η δ  and is shown 

as the area by the dashed lines in Figures 9 and 10.  

Mathematically, the robustness metric Rb can be 

defined as 

ηδ

η

η

4

)(∫
+

−
=

Xmean

Xmean

b

dxxf
R    (17) 

 

where x is the investigated algorithm parameter and f(x) 

is the confidence bound variation function with respect 

to x. The physical meaning of Eq. (17) is the shaded 

area normalized by the dashed line area in Figures 9 

and 10.   

The performance of the two updating algorithms is 

investigated using the above mentioned robustness 

metric for Virkler’s dataset first. In this case, 02.0=η  

and 2.0=δ  is used to investigate the parameter m  in 

the crack growth law (Eq. (12)). The mean value of m 

is 874.2 . All predictions are made after six updatings 

and the 99% confidence bounds is shown in Figure 9. 

The robustness metric (Eq. (17)) of the Bayesian 

approach is 2.6 while that for the MRE approach is 0.7. 

The similar investigation if performed for McMaster’s 

dataset with the mean value of m equaling to 9.2 . The 

robustness metric of the Bayesian and MRE approach 

are 3.0 and 0.4, respectively. The metric configuration 

and the visual comparison for McMaster’s dataset are 

shown in Figure 10. 



International Journal of Prognostics and Health Management 

 10  

ζ
m

    (η
1,2

=[0.02 0.02] γ=2.874)

R
U

L
 r

e
la

ti
v
e
 e

rr
o
r

 

 

2.8 2.82 2.84 2.86 2.88 2.9 2.92
-0.5

0

0.5

1

20% Bounds(δ=0.2)

99% Bayesian

99% MRE

 

Figure 9: Comparison of robustness metric after six 

updatings with varying values of m in prior PDF (Eq. 

13) for parameter m  (Virkler's dataset) 
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Figure 10: Comparison of robustness metric after six 

updatings with varying values of m in prior PDF (Eq. 

13) for parameter m  (McMaster's dataset) 

 From the above results we can see that, under this 

specific parameter configuration, MRE exhibits more 

robust against the variation of m in prior PDFs. It may 

be valuable in a practical perspective since most of the 

time an accurate prior is difficult to obtain with a 

limited data source. One issue with this robustness 

metric is that it does not reflect how the performance 

changes with time. More complicated metrics based on 

this idea maybe developed by adding another 

dimension to record the performance variation with 

time. Since Bayesian updating algorithms are 

associated with many factors, such as the total number 

of updating points, the training data size, noise levels, 

etc., further studies are needed to establish such 

concepts regarding the algorithmic robustness. 

 To make further comparison between different 

Bayesian updating and prognosis approaches, more 

data points and even the whole dataset can be used as 

observation data to see with enough measures of 

response whether MRE and Bayesian give similar 

prognosis results and show convergence. Though in 

practice it is more desirable to get an early stage 

accurate prognosis, it is necessary to explore the 

characteristics of different updating algorithms using 

experimental data as we showed in previous sections. 

 

6 CONCLUSION 

A general framework for probabilistic prognosis using 

maximum entropy approach, MRE, is proposed in this 

paper to include all available information and 

uncertainties for RUL prediction. Prognosis metrics are 

used for model comparison and performance 

evaluation. Several conclusions can be drawn based on 

the results in the current investigation: 

- The proposed MRE updating approach results in more 

accurate and precise prediction compared with the 

classical Bayesian method. 

- The classical Bayesian method is a special case of the 

proposed MRE approach and MRE approach is more 

flexible to include additional information for inference, 

which cannot be handled by the classical Bayesian 

method. 

-The prognosis metrics can be successfully used for 

algorithm comparison and can give quantitative values 

in model (algorithm) performance evaluation. 

- A robustness metric measuring the updating 

algorithmic sensitivity to prior uncertainty is proposed 

and applied to both Bayesian and MRE updating 

approaches. The application examples show that MRE 

exhibits more robustness against the uncertainty 

introduced by parameter distribution priors in the sense 

of prognosis performance. 

- It is important to realize when to apply these metrics 

to arrive at meaningful interpretations. For instance, use 

of the convergence metric makes sense only when the 

algorithm predictions converge (get better) with time.  
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NOMENCLATURE 

( )⋅I  Relative information entropy 

m 

m 
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( )⋅µ  Prior PDF 

( )⋅p  Posterior PDF 

( )⋅L  Likelihood function 

( )⋅M  Model prediction of crack length 

( )⋅F  Geometric correction factor 

i
N  Number of cycles 

i
d  Actual crack length 
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